We consider heat conduction models with phase change in heterogeneous materials. We are motivated by important applications including heat conduction in permafrost, phase change materials (PCM), and human tissue. We focus on the mathematical and computational challenges associated with the nonlinear and discontinuous character of constitutive relationships related to the presence of free boundaries and material interfaces. We propose a monolithic discretization framework based on lowest order mixed finite elements on rectangular grids well known for its conservative properties. We implement this scheme which we call P0-P0 as cell centered finite differences, and combine with a fully implicit time stepping scheme. We show that our algorithm is robust and compares well to piecewise linear approaches. While various basic theoretical properties of the algorithms are well known, we prove several results for the new heterogeneous framework, and point out challenges and open questions; these include the approximability of fluxes by piecewise continuous linears, while the true flux features a jump. We simulate a variety of scenarios of interest.
Citation: Lisa Bigler, Malgorzata Peszynska, Naren Vohra. Heterogeneous Stefan problem and permafrost models with P0-P0 finite elements and fully implicit monolithic solver[J]. Electronic Research Archive, 2022, 30(4): 1477-1531. doi: 10.3934/era.2022078
We consider heat conduction models with phase change in heterogeneous materials. We are motivated by important applications including heat conduction in permafrost, phase change materials (PCM), and human tissue. We focus on the mathematical and computational challenges associated with the nonlinear and discontinuous character of constitutive relationships related to the presence of free boundaries and material interfaces. We propose a monolithic discretization framework based on lowest order mixed finite elements on rectangular grids well known for its conservative properties. We implement this scheme which we call P0-P0 as cell centered finite differences, and combine with a fully implicit time stepping scheme. We show that our algorithm is robust and compares well to piecewise linear approaches. While various basic theoretical properties of the algorithms are well known, we prove several results for the new heterogeneous framework, and point out challenges and open questions; these include the approximability of fluxes by piecewise continuous linears, while the true flux features a jump. We simulate a variety of scenarios of interest.
[1] | E. Ahmed, J. Jaffré, J. E. Roberts, A reduced fracture model for two-phase flow with different rock types, Math. Comput. Simul., 137 (2017), 49–70. https://doi.org/10.1016/j.matcom.2016.10.005 doi: 10.1016/j.matcom.2016.10.005 |
[2] | C. Alboin, J. Jaffré, J. E. Roberts, X. Wang, C. Serres, Domain decomposition for some transmission problems in flow in porous media, Numer. Treat. Multiphase Flows Porous Media, 552 (2000), 22–34. |
[3] | J. Rulla, N. J. Walkington, Optimal rates of convergence for degenerate parabolic problems in two dimensions, SIAM J. Numer. Anal., 33 (1996), 56–67. https://doi.org/10.1137/0733004 doi: 10.1137/0733004 |
[4] | E. Magenes, R. H. Nochetto, C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems, ESAIM: M2AN, 21 (1987), 655–678. |
[5] | R. H. Nochetto, C. Verdi, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems, Numer. Funct. Anal. Optim., 9 (1988), 1177–1192. https://doi.org/10.1080/01630568808816279 doi: 10.1080/01630568808816279 |
[6] | J. A. Wheeler, Simulation of heat transfer from a warm pipeline buried in permafrost, Am. Inst. Chem. Eng., (1973), 267–284. |
[7] | J. A. Wheeler, Permafrost thermal design for the trans-Alaska pipeline, Moving Boundary Probl., (1978), 267–284. |
[8] | D. Nicolsky, V. Romanovsky, G. Tipenko, Using in-situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems, The Cryosphere, 1 (2007), 41–58. https://doi.org/10.5194/tc-1-41-2007 doi: 10.5194/tc-1-41-2007 |
[9] | S. Marchenko, V. Romanovsky, G. Tipenko, Numerical modeling of spatial permafrost dynamics in alaska, in Proceedings of Ninth International Conference on Permafrost, Ninth International Conference on Permafrost, (2008), 1125–1130. |
[10] | E. E. Jafarov, S. S. Marchenko, V. E. Romanovsky, Numerical modeling of permafrost dynamics in alaska using a high spatial resolution dataset, The Cryosphere, 6 (2012), 613–624. https://doi.org/10.5194/tc-6-613-2012 doi: 10.5194/tc-6-613-2012 |
[11] | T. Kelley, J. Rulla, Solution of the discretized Stefan problem by Newton's method, Nonlinear Anal., 14 (1990), 851–872. https://doi.org/10.1016/0362-546X(90)90025-C doi: 10.1016/0362-546X(90)90025-C |
[12] | M. F. Wheeler, M. Peszynska, Computational engineering and science methodologies for modeling and simulation of subsurface applications, Adv. Water Resour., 25 (2002), 1147–1173. |
[13] | C. Dawson, S. Sun, M. F. Wheeler, Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Eng., 193 (2004), 2565–2580. https://doi.org/10.1016/j.cma.2003.12.059 doi: 10.1016/j.cma.2003.12.059 |
[14] | R. L. Michalowski, A constitutive model of saturated soils for frost heave simulations, Cold Reg. Sci. Technol., 22 (1993), 47–63. https://doi.org/10.1016/0165-232X(93)90045-A doi: 10.1016/0165-232X(93)90045-A |
[15] | Y. Zhang, R. Michalowski, Thermal-hydro-mechanical analysis of frost heave and thaw settlement, J. Geotech. Geoenviron. Eng., 141 (2015). |
[16] | H. Liu, P. Maghoul, A. Shalaby, A. Bahari, Thermo-hydro-mechanical modeling of frost heave using the theory of poroelasticity for frost-susceptible soils in double-barrel culvert sites, Trans. Geotech., 20 (2019). https://doi.org/10.1016/j.trgeo.2019.100251 doi: 10.1016/j.trgeo.2019.100251 |
[17] | F. Yu, P. Guo, Y. Lai, D. Stolle, Frost heave and thaw consolidation modelling. part 2: One-dimensional thermohydromechanical (THM) framework, Can. Geotech. J., 57 (2020), 1595–1610. |
[18] | M. Peszynska, A. Trykozko, Pore-to-core simulations of flow with large velocities using continuum models and imaging data, Comput. Geosci., 17 (2013), 623–645. https://doi.org/10.1007/s10596-013-9344-4 doi: 10.1007/s10596-013-9344-4 |
[19] | M. Peszynska, A. Trykozko, G. Iltis, S. Schlueter, D. Wildenschild, Biofilm growth in porous media: Experiments, computational modeling at the porescale, and upscaling, Adv. Water Res., 95 (2016), 288–301. https://doi.org/10.1016/j.advwatres.2015.07.008 doi: 10.1016/j.advwatres.2015.07.008 |
[20] | C. Shin, A. Alhammali, L. Bigler, N. Vohra, M. Peszynska, Coupled flow and biomass-nutrient growth at pore-scale with permeable biofilm, adaptive singularity and multiple species, Math. Biosci. Eng., 18 (2021), 2097–2149. https://doi.org/10.3934/mbe.2021108 doi: 10.3934/mbe.2021108 |
[21] | M. Peszynska, J. Umhoefer, C. Shin, Reduced model for properties of multiscale porous media with changing geometry, Computation, 9 (2021), 1–44. |
[22] | T. Arbogast, M. F. Wheeler, N. Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous media, SIAM J. Numer. Anal., 33 (1996), 1669–1687. https://doi.org/10.1137/S0036142994266728 doi: 10.1137/S0036142994266728 |
[23] | C. S. Woodward, C. N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media, SIAM J. Numer. Anal., 37 (2000), 701–724. |
[24] | M. Peszynska, E. Jenkins, M. F. Wheeler, Boundary conditions for fully implicit two-phase flow model, in Recent Advances in Numerical Methods for Partial Differential Equations and Applications (eds. X. Feng and T. P. Schulze), Contemporary Mathematics Series, American Mathematical Society, 306 (2002), 85–106. |
[25] | R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, vol. 49 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1997. https://doi.org/10.1090/surv/049 |
[26] | J. C. Rogers, A. E. Berger, M. Ciment, The alternating phase truncation method for numerical solution of a Stefan problem, SIAM J. Numer. Anal., 16 (1979), 563–587. |
[27] | A. Visintin, Models of phase transitions, vol. 28 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA, 1996. https://doi.org/10.1007/978-1-4612-4078-5 |
[28] | L. W. Lake, Enhanced oil recovery, Prentice Hall, 1989. |
[29] | T. Roubicek, The Stefan problem in heterogeneous media, Ann. l'Inst. Henri Poincaré Anal. Linéaire, 6 (1989), 481–501. |
[30] | E. Javierre, C. Vuik, F. Vermolen, S. van der Zwaag, A comparison of numerical models for one-dimensional Stefan problems, J. Comput. Appl. Math., 192 (2006), 445–459. https://doi.org/10.1016/j.cam.2005.04.062 doi: 10.1016/j.cam.2005.04.062 |
[31] | X. Jiang, R. Nochetto, A P1–P1 finite element method for a phase relaxation model Ⅰ: Quasiuniform mesh, Siam J. Numer. Anal., 35 (1998), 1176–1190. |
[32] | S. M. Allen, J. M. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening, Acta Metall., 27 (1979), 1085–1095. https://doi.org/10.1016/0001-6160(79)90196-2 doi: 10.1016/0001-6160(79)90196-2 |
[33] | Y. Oono, S. Puri, Study of phase-separation dynamics by use of cell dynamical systems, I. modeling, Phys. Rev. A, 38 (1988), 434–453. https://link.aps.org/doi/10.1103/PhysRevA.38.434 doi: 10.1103/PhysRevA.38.434 |
[34] | J. F. Blowey, C. M. Elliott, The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy part Ⅰ: Mathematical analysis, Eur. J. Appl. Math., 2 (1991), 233–280. https://doi.org/10.1017/S095679250000053X doi: 10.1017/S095679250000053X |
[35] | P. Reddy, C. Gunasekar, A. Mhaske, V. Krishna, Enhancement of thermal conductivity of pcm using filler graphite powder materials, IOP Conf. Ser.: Mater. Sci. Eng., 402 (2018). https://doi.org/10.1088/1757-899X/402/1/012173 doi: 10.1088/1757-899X/402/1/012173 |
[36] | Rubitherm ® Technologies GmbH, 2021. https://www.rubitherm.eu |
[37] | D. Yu, Z. He, Shape-remodeled macrocapsule of phase change materials for thermal energy storage and thermal management, Appl. Energy, 247 (2019), 503–516. https://doi.org/10.1016/j.apenergy.2019.04.072 doi: 10.1016/j.apenergy.2019.04.072 |
[38] | M. L. Cohen, Measurement of the thermal properties of human skin: A review, J. Invest. Dermatol., 69 (1977), 333–338. https://doi.org/10.1111/1523-1747.ep12507965 doi: 10.1111/1523-1747.ep12507965 |
[39] | Engineering Toolbox, 2021. https://www.engineeringtoolbox.com |
[40] | Wikipedia, 2021. https://en.wikipedia.org |
[41] | O. B. Andersland, B. Ladanyi, Frozen Ground Engineering, 2nd edition, Wiley, ASCE, Hoboken, 2004. |
[42] | G. H. Meyer, Multidimensional Stefan problems, SIAM J. Numer. Anal., 10 (1973), 522–538. https://doi.org/10.1137/0710047 doi: 10.1137/0710047 |
[43] | J. W. Jerome, M. E. Rose, Error estimates for the multidimensional two-phase Stefan problem, Math. Comput., 39 (1982), 377–414. https://doi.org/10.1090/S0025-5718-1982-0669635-2 doi: 10.1090/S0025-5718-1982-0669635-2 |
[44] | C. Verdi, A. Visintin, Error estimates for a semi-explicit numerical scheme for Stefan-type problems., Numer. Math., 52 (1987/88), 165–186. http://eudml.org/doc/133231 |
[45] | D. Boffi, M. Fortin, F. Brezzi, Mixed Finite Element Methods and Applications, Springer series in computational mathematics, 2013. |
[46] | A. Ern, J. L. Guermond, Theory and practice of finite elements, vol. 159 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004. https://doi.org/10.1007/978-1-4757-4355-5 |
[47] | F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991. |
[48] | A. Weiser, M. F. Wheeler, On convergence of block-centered finite differences for elliptic problems, SIAM J. Numer. Anal., 25 (1988), 351–375. https://doi.org/10.1137/0725025 doi: 10.1137/0725025 |
[49] | T. F. Russell, M. F. Wheeler, Finite element and finite difference methods for continuous flows in porous media, Math. Reservoir Simul., (1983), 35–106. |
[50] | R. E. Showalter, Nonlinear degenerate evolution equations in mixed formulation, SIAM J. Math. Anal., 42 (2010), 2114–2131. https://doi.org/10.1137/100789427 doi: 10.1137/100789427 |
[51] | E. Schneid, P. Knabner, F. Radu, A priori error estimates for a mixed finite element discretization of the Richards' equation, Numer. Math., 98 (2004), 353–370. https://doi.org/10.1007/s00211-003-0509-2 doi: 10.1007/s00211-003-0509-2 |
[52] | M. Ulbrich, Semismooth Newton methods for variational inequalities and constrained optimization problems in function spaces, vol. 11 of MOS-SIAM Series on Optimization, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2011. |
[53] | T. Roubicek, Numerical solution of the nonlinear heat equation in heterogeneous media, Numer. Funct. Anal. Optim., 11 (1990), 793–810. |
[54] | T. Roubicek, A finite-element approximation of Stefan problems in heterogeneous media, in Free Boundary Value Problems, (1990), 267–275. |
[55] | R. Glowinski, M. F. Wheeler, Domain decomposition and mixed finite element methods for elliptic problems, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations (eds. R. Glowinski, G. H. Golub, G. A. Meurant and J. Periaux), SIAM, Philadelphia, (1988), 144–172. |
[56] | A. Quarteroni, A. Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 1999. https://doi.org/10.1007/978-94-011-5412-38 |
[57] | I. Pawlow, A variational inequality approach to generalized two-phase Stefan problem in several space variables, Ann. Mat. Pura Appl., 131 (1982), 333–373. https://doi.org/10.1007/BF01765160 doi: 10.1007/BF01765160 |
[58] | M. Niezgodka, I. Pawłow, A generalized Stefan problem in several space variables, Appl. Math. Optim., 9 (1982), 193–224. https://doi.org/10.1007/BF01460125 doi: 10.1007/BF01460125 |
[59] | N. L. Gibson, F. P. Medina, M. Peszynska, R. E. Showalter, Evolution of phase transitions in methane hydrate, J. Math. Anal. Appl., 409 (2014), 816–833. https://doi.org/10.1016/j.jmaa.2013.07.023 doi: 10.1016/j.jmaa.2013.07.023 |
[60] | M. Peszynska, R. Showalter, J. Webster, Advection of methane in the hydrate zone: Model, analysis and examples, Mathe. Methods Appl. Sci., 38 (2015), 4613–4629. https://doi.org/10.1002/mma.3401 doi: 10.1002/mma.3401 |
[61] | M. Peszynska, C. Shin, Stability of a numerical scheme for methane transport in hydrate zone under equilibrium and non-equilibrium conditions, Comput. Geosci., 5 (2021), 1855–1886. https://doi.org/10.1007/s10596-021-10053-2 doi: 10.1007/s10596-021-10053-2 |
[62] | D. Foster, T. Costa, M. Peszynska, G. Schneider, Multiscale modeling of solar cells with interface phenomena, J. Coupled Syst. Multiscale Dyn., 1 (2013), 179–204. https://doi.org/10.1166/jcsmd.2013.1013 doi: 10.1166/jcsmd.2013.1013 |
[63] | T. Costa, D. Foster, M. Peszynska, Domain decomposition for heterojunction problems in semiconductors, in VECPAR 2014, High Performance Computing for Computational Science - VECPAR 2014, 11th International Conference, (2014), 92–101. http://arXiv.org/abs/1412.7946. |
[64] | T. Costa, D. H. Foster, M. Peszynska, Progress in modeling of semiconductor structures with heterojunctions, J. Coupled Syst. Multiscale Dyn., 3 (2015), 66–86. https://doi.org/10.1166/jcsmd.2015.1066 doi: 10.1166/jcsmd.2015.1066 |
[65] | M. Discacciati, E. Miglio, A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), 57–74. https://doi.org/10.1016/S0168-9274(02)00125-3 doi: 10.1016/S0168-9274(02)00125-3 |
[66] | M. Sandells, D. Flocco, Introduction to the Physics of the Cryosphere, Morgan and Claypool, 2014. |
[67] | T. Osterkamp, C. Burn, Permafrost, in Encyclopedia of Atmospheric Sciences, (2003), 1717–1729. https://doi.org/10.1016/B0-12-227090-8/00311-0 |
[68] | X. Zhang, Y. Wu, E. Zhai, P. Ye, Coupling analysis of the heat-water dynamics and frozen depth in a seasonally frozen zone, J. Hydrol., 593 (2021). https://doi.org/10.1016/j.jhydrol.2020.125603 doi: 10.1016/j.jhydrol.2020.125603 |
[69] | X. Zhang, E. Zhai, Y. Wu, D. Sun, Y. Lu, Theoretical and numerical analyses on hydro–thermal–salt–mechanical interaction of unsaturated salinized soil subjected to typical unidirectional freezing process, Int. J. Geomech., 21 (2021), 04021104. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002036 doi: 10.1061/(ASCE)GM.1943-5622.0002036 |
[70] | J. Wettlaufer, M. G. Worster, Premelting dynamics, Annu. Rev. Fluid Mech., 38 (2006), 427–452. https://doi.org/10.1146/annurev.fluid.37.061903.175758 doi: 10.1146/annurev.fluid.37.061903.175758 |
[71] | A. W. Rempel, J. S. Wettlaufer, M. G. Worster, Premelting dynamics in a continuum model of frost heave, J. Fluid Mech., 498 (2004), 227–244. https://doi.org/10.1146/annurev.fluid.37.061903.175758 doi: 10.1146/annurev.fluid.37.061903.175758 |
[72] | C. W. Lovell, Temperature effects on phase composition and strength of partially-frozen soil, Highw. Res. Board Bull., 1957. |
[73] | V. Romanovsky, T. Osterkamp, Effects of unfrozen water on heat and mass transport in the active layer and permafrost, Permafrost Periglacial Processes, 11 (2000), 219–239. https://doi.org/10.1002/1099-1530(200007/09) doi: 10.1002/1099-1530(200007/09) |
[74] | Ulrich Hornung, Homogenization and porous media, vol. 6 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 1997. |
[75] | H. Zhang, J. Zhang, Z. Zhang, J. Chen, Y. You, A consolidation model for estimating the settlement of warm permafrost, Comput. Geotech., 76 (2016), 43–50. https://doi.org/10.1016/j.compgeo.2016.02.013 doi: 10.1016/j.compgeo.2016.02.013 |
[76] | C. T. Kelley, Iterative methods for linear and nonlinear equations, SIAM, Philadelphia, 1995. |
[77] | M. Paolini, G. Sacchi, C. Verdi, Finite element approximations of singular parabolic problems, Int. J. Numer. Methods Eng., 26 (1988), 1989–2007. https://doi.org/10.1002/nme.1620260907 doi: 10.1002/nme.1620260907 |